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Quantum interference: experiments
and applications

B y J. G. Rarity and P. R. Tapster
Defence Research Agency, St Andrews Road, Malvern WR14 3PS, UK

We describe the simplest single-photon encoding schemes and introduce the concept
of a quantum optical gate. These gates can be used to build up arbitrary entangled
states of many initially separate single photons. Experimental realization of such a
gate involves the development of nonlinear phase shift elements sensitive at the single
quantum level. We report our experimental efforts using linear optical elements and
non-classical sources where we are able to demonstrate interference and entanglement
of initally separate single-photon pulses.

1. Introduction

In the early part of this century it was realized that light (and matter) will show both
wave and particle natures that are inextricably linked in the uncertainty relations
of quantum mechanics. In the following 90 years a variety of experiments have been
carried out to demonstrate this wave–particle duality both with light (for examples
see Taylor 1909; Grangier et al. 1987) and recently with atoms (Carnal & Mlynek
1991). Until the mid 1980s, most work was aimed at confirming the physics of single
particle interference phenomena. Now it has been exploited in quantum cryptogra-
phy, a method for establishing identical random numbers (keys) at two locations
with absolute security (Bennett et al. 1992; Townsend 1994; Rarity et al. 1994). In
this simple quantum processor, single bits of information are coded onto at most one
photon using polarization or interference. A more general quantum processor would
build up a many particle entangled state from an initial product state containing
several separate particles. In §2 we introduce the concept of encoding information
on single photons and describe an optical implementation of a universal quantum
optical gate (Barenco 1994). Using such a gate it is possible to entangle the state of
a control photon (bit) with that of a target photon (bit). With an assembly of such
gates it is possible to construct any arbitrary N -particle entangled state. More specif-
ically, when we associate the state of each output photon with a bit of information,
one can perform arbitrary computations. For some specific problems (factorization
for example, Shor 1994), such a quantum computer can out-perform a classical com-
puter.

To build a universal quantum gate one needs an ideal Kerr medium showing a
significant phase shift conditional on the presence of a single photon. Although this
is being approached in some laboratories (see the contribution by Kimble et al.), it is
not yet an off-the-shelf commodity. In our experiments (§3), we are limited to linear
elements and thus address the the fundamental question: ‘can one take initially sepa-
rate particles and interferometrically entangle them?’ The simplest way of entangling
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separate particles is to overlap them at a beam splitter in such a way that they appear
indistinguishable when viewed from the beam splitters outputs (§3 a). The probabil-
ity amplitude for particles appearing at separate output ports shows full destructive
interference and photons leave the beam splitter in pairs (Fearn & Loudon 1987).
This effect cannot be reproduced using any classical models. We briefly review the
result of the first such experiment carried out with, in principle, separate sources
(Rarity & Tapster 1997). Although the interference effect seen provides evidence of
entanglement of the two particles, it does not allow tests of the standard Bell inequal-
ities (Bell 1964). We describe simple extensions of the apparatus that allow us to
selectively study two- (§3 b) and three-particle (§3 c) entanglement and the resulting
non-local interference phenomena. In principle, these experiments could be extended
to demonstrate entanglement of many (greater than three) separate particles, but
we are limited by the low efficiencies of both sources and detectors.

2. One-photon interference and encoding

Take a symmetric Mach–Zehnder interferometer as shown in figure 1. In a simple
classical analysis with an input field Ea0 and associated intensity Ia0 = |Ea0|2, the
output intensity will vary as

Ib0/b1 = |Eb0/b1|2 = 1
2Ia0(1± cosφ). (2.1)

This is a linear loss free device as Ib0+Ib1 = Ia0 for all interferometer phase differences
φ. Here we are interested in the behaviour of a single quantum incident on the same
interferometer. We associate probability amplitudes with the presence of a photon
in the input modes and deal with the probability amplitudes in a similar way to
the classical fields. In the simplest case, the photon is input from one mode (a0,
say) and representented by the number state |1〉a0 with unit amplitude. This state
is transformed at the first beam splitter

|1〉a0 → (1/
√

2)[|1〉m0 + i|1〉m1], (2.2)

noting that the reflection and transmission amplitudes of the beam splitter are i/
√

2,
1/
√

2 with the phase change on reflection required for energy conservation. Obviously,
the presence of the photon in one arm implies an empty mode or vacuum state in the
other. In this work we specialize to single-photon states throughout and thus leave
the vacuum implicit. After propagating and incurring a phase delay eiφ only in the
m1 arm of the interferometer, a similar transformation occurs at the second beam
splitter and the state becomes

|1〉a0 → 1
2 i(1 + eiφ)|1〉b0 + 1

2(1− eiφ)|1〉b1. (2.3)

We now identify the probability of detecting a single photon at a particular interfer-
ometer output as the modulus square of the associated probability amplitude

Pb0/b1 = 1
2(1± cosφ), (2.4)

which, of course, is indentical to the classical result when we have unit intensity
input. Again, we see that Pb0 + Pb1 ≡ 1, i.e. the total probability of detecting a
photon is unity in this loss free case.

We can now use this system to encode information on a single photon. A phase
φ = 0 sends all photons to b0, while φ = π sends all photons to b1. We can interpret
a detection in b0 as a ‘zero’ and b1 as a ‘one’. One extension from any classical
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Figure 1. (a) Generic Mach–Zehnder interferometer consisting of two 50/50 beam splitters (BS).
Input modes are labelled a0 and a1 and output modes b0 and b1. The two paths (m0, m1)
through the interferometer are assumed to be identical optical length apart from a phase shift
φ. (b) Polarization interferometer. Here the modes within the interferometer are colinear but
correspond to orthogonal circular polarizations. The phase shift φ is now varied by rotating a
waveplate ( 1

2λ).

encoding scheme is the situation where the phase lies between these two extremes.
Setting φ = 1

2π transforms the input state to

|1〉a0 → (e3iπ/4/
√

2)(|1〉b0 + |1〉b1) (2.5)

and now our single-photon data is in a superposition state of a 1 and a zero. Detection
at this point will provide random information as we have a 50% chance of detecting
a one or a zero.

Information can also be coded on a single photon using two orthogonal polar-
izations such as vertical and horizontal. The coding can be manipulated simply by
rotating the polarization in a waveplate. We show this to be equivalent to the above
scheme by drawing a polarization interferometer in figure 1b. Now the m0, m1 modes
are colinear circularly polarized modes and the relative phase between them is varied
by rotating the waveplate. If we define θ as the angle between the waveplate fast axis
and the polarization direction of the a0 mode, then the interferometer transforms

|1〉a0 → (cos 2θ|1〉b0 − sin 2θ|1〉b1) (2.6)

and again we see definite outputs when 2θ = 0, 1
2π and superposition states otherwise.

A direct application of this simple single-photon coding has been in secure key
sharing schemes commonly known as quantum cryptography (Bennett et al. 1992;
Townsend et al. 1993; Townsend 1994; Rarity et al. 1994). In polarization based
quantum cryptography, zeros are encoded with either 0◦ OR 45◦ polarized single
photons and ones are encoded in 90◦ OR 135◦ polarized single photons. The receiver
is a polarising beam splitter randomly switched between 0◦ and 45◦ measurement
bases. The security against eavesdroppers is guaranteed because the coding basis
used is not known at the time of transmission and is only shared between sender
and receiver (using a conventional communication channel) for those photons that
are received.

Returning to the interferometric scheme of figure 1a, we see that in general the
single-photon input is a superposition state with transformation

α|1〉a0 +β|1〉a1 → [iα cos( 1
2φ) +β sin( 1

2φ)]|1〉b0 + [iβ cos( 1
2φ)−α sin( 1

2φ)]|1〉b1, (2.7)

with α2 + β2 = 1 to normalize the one-photon probability and ignoring global phase
shifts. The interferometer can be configured in two extreme positions by choosing
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φ = 0 and φ = π. In the former, all inputs are unchanged after the gate, while the
latter acts as a ‘quantum’ NOT gate. All inputs to a0 appear in the b1 output and
vica versa.

We can extend the simple classically controlled gate above to a fully quantum con-
trolled entity by assuming the phase difference φ ≡ π is conditional on the presence
of a photon in an ideal nonlinear medium, as illustrated in figure 2. The control pho-
ton is assumed itself to be in a superpostion state between two modes δ|1〉c0 +γ|1〉c1
and δ2 + γ2 = 1. This quantum controlled NOT gate transforms the input product
state

(α|1〉a0 + β|1〉a1)(δ|1〉c0 + γ|1〉c1)→ α[iδ|1〉b0|1〉c0 − γ|1〉b1|1〉c1]
+β[iδ|1〉b1|1〉c0 + γ|1〉b0|1〉c1]. (2.8)

The above state cannot be separated into a product state of localized single photons
and thus cannot be reproduced classically. The non-local nature of this state is
emphasized when we take the simple case of a single photon at the a0 input |1〉a0
and a control photon in an equal superposition (1/

√
2)(|1〉c0 + |1〉c1). The state after

the gate and after the b and c modes have propagated to remote locations is

Ψout = (1/
√

2)[i|1〉b0|1〉c0 − exp i(θb + θc)|1〉b1|1〉c1], (2.9)

with arbitrary propagation phase differences θb,c. This is the simplest two-photon
entangled state and we will discuss non-local interference phenomena associated with
such a state in §3 b. It is easier to describe the operation of this gate in terms of a
matrix transformation as one would with classical logic. The intial (two-bit) state
can be represented by four-dimensional vectors Ψin = (I00, I01, I10, I11) and the final
state Ψout = (F00, . . . , F11), with elements representing the probability amplitudes
for each of the possible input and output states (for example, I00 is the probability
amplitude for |1〉c0|1〉a0). The gate operation can then be written as a 4× 4 matrix
transformation,

F00

F01

F10

F11

 =


1 0 0 0
0 1 0 0
0 0 cos(1

2φ) i sin(1
2φ)

0 0 i sin(1
2φ) cos( 1

2φ)



I00

I01

I10

I11

 . (2.10)

The phase shifts in the beam splitters and internal to the interferometer have been
arranged such that the phase shift is zero when the control photons are in the c0
mode. The above general operation can be cascaded to link many individual particles
in a general entangled state. In principle, this would allow arbitrary algorithms to be
carried out. The most spectacular example of such an algorithm was recently reported
by Shor (1994). His algorithm is capable of factoring large numbers in a time which
increases polynomially with increasing number of digits. The most efficient classical
algorithms are limited to an exponential increase in computing time.

3. Interference and entanglement of separate sources

(a ) Mixing separate photons at a beam splitter
The operation of arbitrary quantum logic requires the development of effective

nonlinear media showing conditional phase shifts of up to π per photon. Although
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Figure 2. A universal quantum gate. In general, a single-photon input is in a superposition of
modes a0 and a1 and the output (single photon) is in a superposition of modes b0 and b1. The
phase shift within the symmetric Mach–Zehnder interferometer is conditional on the presence of
a single photon in either mode c0 (phase shift φ = 0) OR in mode c1 (phase shift φ = π). When
the control photon is in a superposition state, the control and output photons are entangled as
described in the text.

Figure 3. The input (a, b) and output (c, d) modes of a beam splitter (BS). Coincidences are
measured between photon counting detectors placed in the c and d modes.

this is being approached in some laboratories (Tourchette et al. 1995), the universal
quantum gate is still some way off. We are still interested in building a variety of
entangled states in the laboratory and find that we can go some way simply using
the humble beam splitter.

The beam splitter is represented as in figure 1 with input modes | 〉a, | 〉b and
output modes | 〉c, | 〉d. We again assume equal transmission and reflection amplitudes
t = 1/

√
2, r = i/

√
2. An input state containing two single-photon states in a product

state is transformed by the beam splitter to give

|1〉a|1〉b → [(t2 + r2)|1〉c|1〉d + irt(|2〉c|0〉d + |0〉c|2〉d)]. (3.1)

The amplitude for seeing |1〉c|1〉d shows a destructive interference effect because
r2 = −t2. The probability Pcd of seeing photons simultaneously in both beam splitters
outputs is zero; the photons always appear as pairs in random outputs of the beam
splitter.

Originally, this effect was experimentally demonstrated using the correlated pairs
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Figure 4. The experimental apparatus used to demonstrate interference between separate
sources. Key: ML, mode locked Ti-Sapphire laser; P, doubled pump beam; PDC, parametric
down-conversion crystal; A, aperture; fg, fc, fd, interference filters with 815 nm centre wave-
length; L, lenses coupling light to optical fibres; BS, beam splitter; Dg,c,d, photon counting
avalanche photodiodes. Triple coincidences are measured by a gated AND gate. Solid lines indi-
cate light of 815 nm wavelength, dashed lines indicate light of 407.5 nm wavelength and thick
curved solid lines represent optical fibres.

of photons produced in the process of parametric down conversion (Hong et al.
1987; Rarity & Tapster 1988, 1989). Our interest here is to show that the same
interference effect will occur between two single photons which, in principle, could
have no common history. This is in preparation for extending the experiment to
demonstrate interference and entanglements between arbitrary numbers of separate
photons.

We can gate out the one-photon state from a parametric down-conversion source
(Rarity et al. 1987). The parametric source emits photon pairs simultaneously in
correlated directions. Detection of one photon in a particular direction at a particular
time is used to locate a single partner photon with an accuracy limited by the detector
resolution time which is typically of order 0.4 ns. To overlap two such photons at
a beam splitter and make them, in principle, indistinguishable (Rarity 1995), we
require an inverse photon bandwidth of order 1 GHz which can be achieved using
Fabry–Perot etalons. This leads to low single-photon rates with present parametric
down-conversion crystals. Here we choose to time gate using a short (200 fs) pump
pulse. The minimum bandwidth associated with a pulse length of a few hundred
femtoseconds is then a few nanometres, which is reached by narrow band interference
filters.

The experiment is shown in figure 4 (Rarity et al. 1997). A frequency-doubled
mode-locked laser (407.5 nm wavelength) pumps a thin parametric down-conversion
crystal cut for non-degenerate operation. Signal and idler photons satisfying energy
conservation are emitted spontaneously in a broad band cone behind the crystal and
apertures are placed to select 815 nm wavelength beams from opposite ends of a cone
diameter. Detection of an idler (or gate) photon in one beam with time resolution
better than the pump pulse separation time essentially localizes a single signal (b
mode) photon within a pulse length which in the experiment is around 200 fs. The
signal photon so selected is a good approximation to a one-photon state and thus
must have random phase when we measure it with respect to the original near infra-
red beam. The two can be thought of as separate sources. Thus, we expect to see no
first-order interference fringes when we mix this single-photon source with coherent
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Figure 5. Triple coincidence rate measured as a function of delay ∆X in the weak laser path.
Solid line shows a least squares fit based on a Gaussian dip with visibility 64% and 1/e width
133 µm (result reproduced from Rarity et al. 1997).

pulses from the undoubled mode-locked laser. However, when we reduce the intensity
of the coherent pulses to the point where the energy per pulse is much less than one
quantum, we again approximate a one-photon state diluted by a large amount of
vacuum. We find that the dominant terms in the state behind a beam splitter are
just those highlighted in equation (3.1). When the single photon and coherent pulses
overlap, the second-order interference effect leads to a suppression of coincidences
after the beam splitter. A typical result showing the gated coincidence rate (triple
coincidence) as a function of path length difference altered by an optical trombone
in the weak pulse path is shown in figure 5. The interference dip of 63% is beyond
the maximum (50%) expected from the second-order interference of two random
relative-phase classical pulses.

(b ) Entanglement and non-local interference of two separate sources
The above experiment can be exended to show a non-local interference effect using

the modifications shown in figure 6. Two possible b modes are created at a beam
splitter. These different parts of the gated single photon are then mixed at separated
beam splitters (BS1 and BS2) with weak coherent pulses of well-defined phases φ1,
φ2. The input state to the two beam splitters is now approximated by the product
state

|Ψ〉 = 1
2 [(eiφ1 |1〉a1 + eiφ2 |1〉a2)(|1〉b1 + |1〉b2)], (3.2)

where subscripts a1, b1 define modes propagating to BS1, and a2, b2 propagating to
BS2. In the above approximation we again ignore the large vacuum component of
the weak coherent state because we are interested only in coincident pair detection
events. Higher-order terms (than |1〉a) can be ignored because they are small in the
weak coherent state limit (Rarity et al. 1997). |Ψ〉 can be simply expanded to

|Ψ〉 = 1
2(eiφ1 |1〉a1|1〉b2 + eiφ2 |1〉a2|1〉b1) + 1

2(eiφ1 |1〉a1|1〉b1 + eiφ2 |1〉a2|1〉b2). (3.3)

In this last equation the state is separated into two groups of terms. The first set
involves one photon at BS1 and the other at BS2, and in the second we see both
photons at BS1 OR at BS2. Counting only the coincident detections between the
detector set 1 and 2, we elect to study only the first group of terms which are max-
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Figure 6. Proposed apparatus to demonstrate a violation of Bell’s inequality using heterodyne
measurements of a single photon. Key as in figure 4. The b mode is split at a beam splitter
and recombines with two weak coherent beams (a modes) with well-defined phase set by phase
shifters P1 and P2 at separated beam splitters BS1 and BS2. Measuring triple coincidences
between gate g, and detector sets 1 and 2 selects an entangled state from the initial product
state.

imally entangled. Taken separately, this group of terms can no longer be factorized
into a simple (classical) product state.

Using again the beam splitter reflection and transmission coefficients 1/
√

2, i/
√

2,
the wave function is transformed after BS1 and BS2 to

|Ψ〉bc = 1
4 [i(eiφ1 + eiφ2)|1〉10|1〉20 + i(eiφ1 + eiφ2)|1〉11|1〉21

+(eiφ1 − eiφ2)|1〉11|1〉20 − (eiφ1 − eiφ2)|1〉10|1〉21]

+ieiφ1(|2〉10 + |2〉11) + ieiφ2(|2〉20|0〉21 + |0〉20|2〉21)]. (3.4)

The subcripts 10, 11, 20, 21 now refer to modes after the beam splitters leading
directly to similarly labelled detectors (see figure 6). The probability of seeing a
coincidence (per pulse) in the 10 and 21 (or the 11 and 20) detectors (gated by a
detection in the g detector to select out only one-photon states) is

P12g = 1
8C[1− cos(φc − φd)], (3.5)

where C is the probability of a triple coincidence per pulse in the absence of beam
splitters (C � 1). For coincidences between c0, d0 or c1, d1 detectors, the minus is
replaced by a plus. The phase adjustments can be performed remote from the sources
and we essentially have an apparatus that can be used to demonstrate violations of
Bell’s inequality (Bell 1964). A similar experiment was first analysed by Tan et
al. (1989), where the effect was described as a ‘Bell inequality of a single photon’.
Even when extremely attenuated, the laser can be thought of as a classical field
(with a well-defined phase). This experiment can then be thought of as a non-local
measurement of the phase of a single photon by heterodyning with a classical field.
If we formulate a semiclassical theory where the gated single photon has a definite
phase after leaving the crystal, albeit with a randomly varying value from photon to
photon, we cannot reproduce the unit visibility interference effect of equation (3.5).
The concept of phase of a single photon or in general the phase of a number state is
not defined until after measurement.
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Figure 7. (a) Proposed apparatus to demonstrate three-photon interference. We exploit the fact
that the phase matching of the down-conversion process allows us to select two pairs of energy
matched modes using dichroic beam splitters (DBS) with reflected frequency (fr) and transmit-
ted frequency (ft). We now effectively start with an entangled state from the down-conversion
crystal which consists of an equal superposition of a reflected signal photon and a transmitted
idler OR a transmitted signal and reflected idler photon. We recombine reflected signal and idler
modes at beam splitters BS3 and mix the the two transmitted modes with weak coherent states
in modes a at beam splitters BS1 and BS2 as shown. Triple coincidence measurements at the
beam splitter outputs effectively select out a three-photon entangled state. The distribution of
triple coincidences between the eight possible sets of three detectors is altered by altering the
phases φ1,2,3 using phase plates P1,2,3.

(c ) Selecting three particle entanglements using a weak coherent source and pair
photon source

To extend the experiment further we can use both photons from the parametrically
generated pair and a weak coherent source to perform a three-photon interference
experiment as shown in figure 7. We now label the two down-converted beams as
signal s and idler i. Each down-converted beam is split by a dichroic beam splitter
into one of two frequencies labelled r (reflected) and t (transmitted). The frequencies
fr and ft are chosen to satify energy conservation between the two down-converted
beams and the pump. As a result, the presence of an idler photon in an r mode is
directly correlated with a signal photon in a t mode and vica versa (for example see
Rarity & Tapster 1990). The weak coherent beam is split at a standard beam splitter
into two a modes which recombine with the transmitted signal and idler modes at
two separate beam splitters labelled 1 and 2 (we select only ft from the weak coherent
state using narrowband filters). The reflected signal and idler modes recombine at
a third beam splitter BS3. Using the same approximations as in equation (3.2), the
state before the remote beam splitters is

|Ψ〉 = 1
2 [(eiφ1 |1〉at1 + |1〉at2)(ei(φ2+φ3)|1〉st2|1〉ir3 + |1〉sr3|1〉it1)], (3.6)

where subscripts again uniquely label the source (a, s, i), frequency (ft, fr) and
destination (BS1, 2, 3). When we limit ourselves to three-fold coincidences beyond
the beam splitters, we select only

|Ψ〉 = 1
2 [ei(φ1+φ2+φ3)|1〉at1|1〉st2|1〉ir3 + |1〉it1|1〉at2|1〉sr3]. (3.7)
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This is analagous to the GHZ state introduced by Greenberger et al. (1992). The
above authors show that for particular settings of the phase triple coincidences will
be counted that could not be seen in a comparative classical experiment. This further
emphasizes the divergence of quantum mechanics from the classical world view as
system size increases.

4. Conclusions

The possibility of building arbitrary superpositions and entanglement of large
numbers of initially unconnected one-photon states has been shown. This can be
done in theory using an ideal nonlinear element in a Mach–Zehnder interferometer.
Such an element is approaching reality in high finesse cavity experiments (Tourchette
et al. 1995). However, we can go some way to showing higher-order entanglement
using linear elements such as beam splitters combined with pair photon sources
and weak coherent states. In such experiments we select entangled states from initial
product states by measuring three-fold coincident photo-detections. The experiments
are limited because the rate of creation of pair photons in parametric down conversion
has to remain well below one per coherence time. A further limitation is the effective
detector efficiencies seen in these experiments which remain below 20% to date. In
the experiments reported here only one triple coincidence per second was counted
on average. When we go beyond three- to four-photon experiments with existing
apparatus we predict a four-fold coincidence counting rate of around one per hundred
seconds.

Within our discussion of quantum gates and quantum computing we have not dis-
cussed the problems of decoherence and errors. Such errors can arise from imperfect
interference in the interferometers and in the case of the quantum controlled NOT
gate from coupling to the environment in the (not so ideal) nonlinear medium. These
errors can drastically reduce the performance of any quantum computer of realistic
size. However, simple quantum processing such as quantum cryptography is robust
even at error rates as high as 1%. These systems are nearing application (Townsend
1997; Zbinden et al. 1997a,b).

The authors thank Dr Artur Ekert and Dr Adriano Barenco for numerous discussions on quan-
tum logic, Dr John Roberts and colleagues at DRA for reassuring us that it can be that simple
and Professor Rodney Loudon for telling us about a strange counter-intuitive propertry of pair
photons at beam splitters.
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